
Other Gate Types

Why?
• Implementation feasibility and low cost

• Power in implementing Boolean functions

• Convenient conceptual representation

Gate classifications
• Primitive gate - a gate that can be described 

using a single primitive operation type (AND or 
OR) plus an optional inversion(s).

• Complex gate - a gate that requires more than 
one primitive operation type for its description



Buffer

 A buffer is a gate with the function F = X

 In terms of Boolean function, a buffer is the same 
as a connection!

 A buffer is an electronic amplifier used to 
improve circuit voltage levels and increase the 
speed of circuit operation.

X F



NAND Gate

 The basic NAND gate has the following symbol, 
illustrated for three inputs:

AND-Invert (NAND)

 NAND represents NOT AND, i. e., the AND 
function followed by a NOT.  

 The symbol shown is an AND-Invert.   The small 
circle (, “bubble”) represents the invert function.  

ZYX)Z,Y,X(F =
X

Y

Z



NAND Gates

 Applying  DeMorgan's Law gives Invert-OR (NAND)

 This NAND symbol is called Invert-OR, since inputs are 
inverted and then ORed together. 

 AND-Invert and Invert-OR both represent the NAND 
gate. 

ZYX)Z,Y,X(F ++=
X
Y
Z



NAND Gates

 The NAND gate is the natural implementation for CMOS 
technology in terms of chip area and speed.

 Universal gate: a gate type that can implement any 
Boolean function, NAND is an universal gate. 

NOT

AND OR



NOR Gate

The basic NOR gate has the following 
symbol, illustrated for three inputs:

OR-Invert (NOR)
NOR represents NOT-OR, i. e., the OR 

function followed by a NOT.  

The symbol shown is an OR-Invert.   The 
small circle (,“bubble”) represents the 
invert function. 

X
Y
Z

ZY +X +)Z,Y,X(F =



NOR Gate

 Applying DeMorgan's Law gives Invert-AND (NOR)

 This NOR symbol is called Invert-AND, since inputs are 
inverted and then ANDed together. 

 OR-Invert and Invert-AND both represent the NOR 
gate. 

X
Y
Z

ZYX)Z,Y,X(F = 



NOR Gate (continued)

 The NOR gate is a natural implementation for some 
technologies other than CMOS in terms of chip area 
and speed.

 The NOR gate is an universal gate

NOT

ANDOR



Exclusive OR/Exclusive NOR

 The eXclusive OR (XOR) function is an important 
Boolean function used extensively in logic circuits.

 The XOR function may be;
• implemented directly as an electronic circuit 

• implemented by interconnecting other gate types

 The eXclusive NOR (XNOR ) function is the 
complement of the XOR function

 By our definition, XOR and XNOR gates are complex 
gates. 



Exclusive OR/ Exclusive NOR

Uses for the XOR and XNORs gate include:
• Adders/subtractors/multipliers

• Counters/incrementers/decrementers

• Parity generators/checkers

Definitions
• The XOR function is:   

• The eXclusive NOR (XNOR) function, otherwise 
known as equivalence is:

Strictly speaking, XOR and XNOR gates do 
no exist for more that two inputs. Instead, 
they are replaced by odd and even functions. 

YXYX +=YX 

YXYXYX +=



Truth Tables for XOR/XNOR

 Operator Rules:   

XOR                       XNOR
 The XOR function means:

X OR Y, but NOT BOTH
 The XNOR function means:

X AND Y are equal, BOTH 0 OR 1

X Y

0 0 0

0 1 1

1 0 1

1 1 0

0 0 1

0 1 0

1 0 0

1 1 1

or  X  Y
YX X Y YX



XOR/XNOR

 The XOR function can be extended to 3 or more 
variables. For more than 2 variables, it is called an 
odd function or modulo 2 sum (Mod 2 sum), not an 
XOR:

 The complement of the odd function is the even 
function.

 The XOR identities:

+++= ZYXZYXZYXZYXZYX

X1XX0X 

1XX0XX =

=



XYYX =

ZYX)ZY(XZ)YX( ==

XYYX =

=

=



Symbols For XOR and XNOR

 XOR symbol:

 XNOR symbol:

 Shaped symbols exist only for two inputs



XOR Implementations

 The simple SOP implementation uses the following 
structure:

 A NAND-only implementation is:

X

Y

X Y

X

Y
yx  y = yx + y = x + y

yx  x = yx + x = x + y

yx X Yx+y x+y =



Odd and Even Functions

 The odd and even functions on a K-map form 
checkerboard patterns.

 SOP for odd and even functions are consist of disjoint 
of sets 2n-1 minterms that are prime implicants.

 Implementation of odd and even functions for greater 
than four variables as a two-level circuit is tough, so 
we use “trees”.



Example: Odd Function Implementation

 Design a 3-input odd function  F = X   Y   Z
with 2-input XOR gates

 Factoring,  F = (X    Y)    Z

 The circuit: 

+ +

X

Y

Z
F

+ +

x

y

10 2

4

3

5 67
1

1

1

1

z

x
yz=00 yz=01 yz=11 yz=10

x=0

x=1



Odd and Even Functions

 Odd function Even function

1

1

1

1

11

1

1
8 9 1011

12 13 1415

0 1 3 2

5 64 7

X

Z

W

Y
yz=00 yz=01 yz=11 yz=10

wx=00

wx=01

wx=11

wx=10

yz
W
X

1

1

1

1

1 1

1

1
8 9 1011

12 13 1415

0 1 3 2

5 64 7

X

Z

W

Y
yz=00 yz=01 yz=11 yz=10

wx=00

wx=01

wx=11

wx=10

yz
W
X



Example: Even Function Implementation

 Design a 4-input even function  F = W    X    Y    Z
with 2-input XOR  and XNOR gates

 Factoring,  F = (W    X)    (Y    Z)

 The circuit: 

W

X

Y
F

Z

+ ++

+ + +

1

11

11

11

1 X

Y

Z

W



Parity Generators and Checkers

 Parity bit added to n-bit code to produce an n + 1 bit code:
• Add odd parity bit to generate code words with even parity
• Add even parity bit to generate code words with odd parity
• Use odd parity circuit to check error words with even parity
• Use even parity circuit to check error words with odd parity 

 Example: n = 3. Generate even
parity code words of length four
with odd parity generator:

 Check even parity code words of 
length four with odd parity checker:

 Operation: (X,Y,Z) = (0,0,1) gives
(X,Y,Z,P) = (0,0,1,1) and E = 0.
If Y changes from 0 to 1 between
generator and checker (X,Y,Z, P) = (0,1,1,1) , then E = 1 
indicates an error.

X
Y

Z P

X
Y

Z
E

P



Enabling Function

 Enabling permits an input signal to pass through to 
an output

 Disabling blocks an input signal from passing 
through to an output, replacing it with a fixed value

0 output

 When disabled EN=0

1 output

 When enabled EN = 1 F = X

 The value on the output when it is disable can be 0, 
1, or Hi-Z

X
F

EN

(a)

EN

X
F

(b)



The 3-State Buffer

 For the symbol and truth 
table, IN is the data input, 
and EN, the control input.

 For EN = 0, regardless of the 
value on IN (denoted by X), 
the output value is Hi-Z.

 For EN = 1, the output value 
follows the input value.

 High impedance (or Hi-Z): In 
that state the output is 
disconnected which is equal 
to open circuit. In the other 
words in that state circuit 
has no logic significant. 

IN

EN

OUT

EN IN OUT

0 X Hi-Z

1 0 0

1 1 1

Symbol

Truth Table



3-State Logic Circuit 

 Data Selection Function: If S = 0, OL = IN0, else OL = IN1

 Performing data selection with 3-state buffers:

 Since EN0 = S and EN1 = S, one of the two buffer outputs is 
always Hi-Z and never occurs EN0 = EN1 = 1.

EN0

S

IN0 EN1

S

IN1 OL

0 X 1 0 0

0 X 1 1 1

1 0 0 X 0

1 1 0 X 1

IN0

IN1

EN0=S

EN1=S

S
OL



More Complex Gates

 Bi-diretional line: 
• S=0: Left  Right; 

• S=1: Left  Right, or viceversa?

IN

IN

EN0=S

EN1=S

S
OL/

OL



More Complex Gates (continued)

 The remaining complex gates are SOP or POS structures 
with and without an output inverter.

 The names are derived using:
 A - AND

 O - OR

 I  - Inverter

• Numbers of inputs on first-level “gates” or directly to 
second-level “gates”

 Example AOI: AND-OR-Invert consists of a single gate with 
AND functions driving an OR function which is inverted. 

 Example: 2-1 AO has two 2-input ANDs driving an OR

 These gate types are used because:
• the number of transistors needed is fewer than required by 

connecting together primitive gates

• potentially, the circuit delay is smaller, increasing the circuit 
operating speed  



Commercial Logic Chips



PLA: Programmable Logic Arrays

 PLAs

• Implement sum-of-product expressions
 2 levels, no possibility to simplify the logical 

expressions

• Take N inputs and produce M outputs
 Each input represents a logical variable

 Each output represents a logical function output

• Internally uses
 An AND array

• Each AND gate receives 2N inputs: N inputs and 
their complements

 An OR array



Programmable Logic Arrays (cont.)

 A blank PLA with 2 inputs and 2 outputs



Programmable Logic Arrays (cont.)

 Implementation examples



Programmable Logic Arrays (cont.)

 Implementation examples



Programmable Logic Arrays (cont.)

 Simplified notation



BC'

B'C

B'D

BC'D

C'D'

CD

B'D'

A

BCD'

A B C D

PLA implementation
BCD to 7-segment display controller

C0 = B C' D + C D + B' D' + B C D' 

C1 = B' D + C' D' + C D + B' D'

C2 = B' D + B C' D + C' D' + C D + B C D'

C3 = B C' D + B' D + B' D' + B C D'

C4 = B' D' + B C D'

C5 = B C' D + C' D' + A + B C D'

C6 = B' C + B C' + B C D' + A

C0 C1 C2 C3 C4 C5 C6



NAND Mapping Algorithm

1. Replace ANDs and ORs:

2. Note that:

.

.

.
.
.
.

.

.

.

.

.

.

.

.

.
.
.
.



NAND Mapping Example



NOR Mapping Algorithm

1. Replace ANDs and ORs:

2. Note that:

.

.

.
.
.
.

.

.

.

.

.

.
.
.
.

.

.

.



NOR Mapping Example

A

B

C

D

E

F

(a)

A

B

C

D

E

F

(c)

F

A

B

X

C

D

E

(b)

2

3

1



C0 C1 C2 Function Comments

0 0 0 1 always 1

0 0 1 A + B logical OR

0 1 0 (A • B)' logical NAND

0 1 1 A xor B logical xor

1 0 0 A xnor B logical xnor

1 0 1 A • B logical AND

1 1 0 (A + B)' logical NOR

1 1 1 0 always 0

3 control inputs: C0, C1, C2

2 data inputs: A, B

1 output: F

Logical Function Unit

 Multi-purpose Function Block
• 3 control inputs to specify operation to perform on 

operands

• 2 data inputs for operands

• 1 output of the same bit-width as operands

A

B

C0 C1 C2

F



111

1 111

1

11

11

1 1

1

1

Formalize the Problem

C0 C1 C2 A B F
0 0 0 0 0 1

0 0 0 0 1 1

0 0 0 1 0 1

0 0 0 1 1 1

0 0 1 0 0 0

0 0 1 0 1 1

0 0 1 1 0 1

0 0 1 1 1 1

0 1 0 0 0 1

0 1 0 0 1 1

0 1 0 1 0 1

0 1 0 1 1 0

0 1 1 0 0 0

0 1 1 0 1 1

0 1 1 1 0 1

0 1 1 1 1 0

1 0 0 0 0 1

1 0 0 0 1 0

1 0 0 1 0 0

1 0 0 1 1 1

1 0 1 0 0 0

1 0 1 0 1 0

1 0 1 1 0 0

1 0 1 1 1 1

1 1 0 0 0 1

1 1 0 0 1 0

1 1 0 1 0 0

1 1 0 1 1 0

1 1 1 0 0 0

1 1 1 0 1 0

1 1 1 1 0 0

1 1 1 1 1 0

C0 = 0 C0 = 1

m=C0’A’B+C0’AB’+C2’A’B’+C1’AB

C1C2 C1C2

ABAB

c= m+C0’C1’C2’+C0’C1’B+C0’C1’A+C0’C2’A’+C0’C2’B’



Beginning Hierarchical Design

 To control the complexity of the function mapping inputs to 
outputs: 
• Decompose the function into smaller pieces called blocks

• Decompose each block’s function into smaller blocks, repeating as 
necessary until all blocks are small enough

• Any block not decomposed is called  a primitive block

• The collection of all blocks including the decomposed ones is a 
hierarchy

 Example:  9-input odd function
• Top Level:  9 inputs, one output

 2nd Level: Four 3-bit odd parity trees in two levels

• 3rd Level: Two 2-bit exclusive-OR functions

 Primitives: Four 2-input NAND gates

• Design requires 4 X 2 X 4 = 32 2-input NAND gates



Hierarchy for Parity Tree Example

B O

X 0
X 1
X 2
X 3
X 4
X 5
X 6
X 7
X 8

Z O

9-INPUT
ODD

FUNCTION

(a) Symbol for circuit

3-INPUT

ODD

FUNCTION

A
0

A 1

A
2

B O

3-INPUT

ODD

FUNCTION

A 0

A 1

A 2

B O

3-INPUT

ODD

FUNCTION

A 0

A 1

A 2

B O

3-INPUT

ODD

FUNCTION

A 0

A 1

A 2

X 0

X 1

X
2

X
3

X 4

X 5

X 6

X 7

X 8

Z O

(b) Circuit as interconnected 3-input odd
function blocks

B O

A 0

A 1

A 2

(c) 3-input odd function circuit as
interconnected exclusive-OR
blocks

(d) Exclusive-OR block as interconnected
NANDs



Reusable Functions

 Whenever possible, we try to decompose a 
complex design into common, reusable function 
blocks

 These blocks are
• verified and well-documented

• placed in libraries for future use



Functions and Functional Blocks

 The functions considered are those found to be very useful  in 
design 

 Corresponding to each of the functions is a combinational 
circuit implementation called a functional block.

 In the past, functional blocks were packaged as small-scale-
integrated (SSI), medium-scale integrated (MSI), and large-
scale-integrated (LSI) circuits. 

 Today, they are often simply implemented within a very-large-
scale-integrated (VLSI) circuit.



Top-Down versus Bottom-Up

 A top-down design proceeds from an abstract, high-level 
specification to a more and more detailed design by 
decomposition and successive refinement

 A bottom-up design starts with detailed primitive blocks and 
combines them into larger and more complex functional 
blocks

 Design usually proceeds top-down to known building blocks 
ranging from complete CPUs to primitive logic gates or 
electronic components.



Decoder

 Is a combinational circuit that converts binary information 
from n input lines to a maximum of 2n unique output lines. For 
example if the number of input is n=3 the number of output 
lines can be  m=23 . It is also known as 1 of 8 because one 
output line is selected out of 8 available lines:

3 to 8 

decoder

enable



 Decoding - the conversion of an n-bit input code to an m-bit 
output code with n m  2n such that each valid code word 
produces a unique output code

 Functional blocks for decoding are

• called n-to-m line decoders, where m  2n, and

• generate 2n (or fewer) minterms for the n input variables

Decoding 



 1-to-2-Line Decoder

 2-to-4-Line Decoder

Note that the 2-to-4-line is 
made up of:

• 2 1-to-2 line decoders 

• 4 AND gates.

Decoder Examples

A 1

0

0

1

1

A0

0

1

0

1

D0

1

0

0

0

D 1

0

1

0

0

D2

0

0

1

0

D3

0

0

0

1

(a)

D0 A1 A0

D1 A1 A0

D2 A1 A0

D3 A1 A0

(b)

A 1

A 0

A D0 D1

0 1 0

1 0 1

(a) (b)

D 1 AA

D0 A



Decoder Expansion - Example  1

 3-to-8-line decoder 
• Number of output ANDs = 8

• Number of inputs to decoder = 3

 Closest possible split to equal
• 2-to-4-line decoder

• 1-to-2-line decoder

 2-to-4-line decoder
 Number of output ANDs = 4

 Number of inputs to decoder = 2

 Closest possible split to equal 
 Two 1-to-2-line decoders



Decoder Expansion - Example 1



Decoder Expansion - Example 2

 7-to-128-line decoder 
• Number of output ANDs = 128

• Number of inputs to decoder = 7
 Closest possible split to equal

 4-to-16-line decoder
• Number of output ANDs = 16

• Number of inputs to decoder = 4

 Closest possible split to equal 

 2 2-to-4-line decoders

 3-to-8-line decoder
• Number of output ANDs = 8

• Number of inputs to decoder = 3

 Closest possible split to equal 

 2-to-4-line decoder

 1-to-2-line decoder



 In general, attach m-enabling circuits to the outputs

 See truth table below for function
• Note use of X’s to denote both 0 and 1 (don’t care)

• Combination containing two X’s represent four binary combinations 
(compact table)

 Alternatively, can be viewed as distributing value of signal EN to 1 
of 4 outputs, in this case, called a demultiplexer

Decoder with Enable

EN

A1

A0 D0

D1

D2

D3

(b)

EN A1 A0 D0 D1 D2 D3

0

1

1

1

1

X

0

0

1

1

X

0

1

0

1

0

1

0

0

0

0

0

1

0

0

0

0

0

1

0

0

0

0

0

1

(a)



General Combinatorial Circuit implementation 
by a Decoder and OR Gates

 Implement m functions of n variables with:
• Sum-of-minterms expressions (SOP)

 One n-to-2n-line decoder

 m OR gates, one for each output

 Approach
 Find the minterms for each output function

 OR the minterms together



Decoder and OR Gates Example

 Implement the following set of functions of four input A, B, C, D:

P1 = Sm(1,2,8,11)

P2 = Sm(1,4,8,13)
P4 = Sm(2,4,8,14)

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

A

B

C

D

P1

P4

P2












Major application of Decoder

 Decoder is use to implement any combinational circuits ( fn )

 For example the truth table for full adder is:

s(x,y,z)=∑(1,2,4,7) and C(x,y,z)= ∑ (3,5,6,7). 

 The implementation with decoder is:



Encoding

 Encoding - the opposite of decoding - the conversion of an 
m-bit input code to a n-bit output code with n m  2n  

such that each valid code word produces a unique output 
code

 An encoder has 2n (or fewer) input lines and n output lines 
which generate the binary code corresponding to the input 
values

 Typically, an encoder converts a code containing exactly 
one bit that is 1 to a binary code corresponding to the 
position in which the 1 appears.



Encoder Example

 A decimal-to-BCD encoder
• Inputs: 10 bits corresponding to decimal digits 0 

through 9, (D0, …, D9)

• Outputs: 4 bits with BCD codes

• Function: If input bit Di is a 1, then the output (A3, A2, 
A1, A0) is the BCD code for i

 The truth table could be formed, but 
alternatively, the equations for each of the four 
outputs can be obtained directly. 



Encoder Example

 Input Di is a term in equation Aj if bit Aj is 1 in the 
binary value for i.

 Equations:

A3 = D8 + D9

A2 = D4 + D5 + D6 + D7

A1 = D2 + D3 + D6 + D7

A0 = D1 + D3 + D5 + D7 + D9

 F1 = D6 + D7 can be extracted 

from A2 and A1.

0
1
2
3
4
5
6
7
8
9

A0

A1

A2

A3
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One of Ten Decoder



n-bit encoder with priority

 If one of the input lines is active the encoder 
produces the binary code corresponding to that 
line

 If more than one of the input lines is activated all 
the output is undefined. We can consider don’t 
care for these situations but in many cases we 
consider this problem by using priority encoder. 



Priority Encoder Example

 Priority encoder with 5 inputs (D4, D3, D2, D1, D0) - highest priority to 
most significant 1 present - Code outputs A2, A1, A0 and V where V 
indicates at least one 1 present.

 Xs in input part of table represent 0 or 1 (don’t care); thus table 
entries correspond to product terms instead of minterms. The 
column on the left shows that all 32 minterms are present in the 
product terms in the table

No. of 
Minterms

Inputs Outputs

D4 D3 D2 D1 D0 A2 A1 A0 V

0 0 0 0 0 X X X 0

1 0 0 0 0 1 0 0 0 1

2 0 0 0 1 X 0 0 1 1

4 0 0 1 X X 0 1 0 1

8 0 1 X X X 0 1 1 1

16 1 X X X X 1 0 0 1



Priority Encoder Example (continued)

D4 = 1

1 1 1

D1

D0

D2

D3

A2=D4

1

1 1 1 1

1 1 1 1

1 1 1 1

D4 = 0

1

1

1

D1

D0

D2

D3

11

11

11

1

1

1

A1=D4D3+D4D2 

D4 = 0

1

1

1 1

1

1 11

11

A0=D4D3+D4D2D1

D0

D2

D3

D1



Priority Encoder Example (continued) 

 Could use a K-map to get equations, but can be 
read directly from table and manually optimized if 
careful:
A2 = D4

A1 =      D3 +      D2 =       F1,  F1 = (D3 + D2)

A0 =      D3 +            D1

V  = D4 + F1 + D1 + D0

D4 D4 D4

D4 D4 D2



Multiplexer

 It is a combinational circuit that selects binary 
information from one of the input lines and directs 
it to a single output line

 For example for 2-to-1 multiplexer if selection S 
is zero then I0 has the path to output and if S is 
one I1 has the path to output

 A typical multiplexer has n control inputs (Sn - 1, … 
S0) called selection inputs, 2n information inputs 
(I2

n
- 1, … I0), and one output Y

 A multiplexer can be designed to have m
information inputs with m <2n as well as n
selection inputs 



2-to-1-Line Multiplexer

 Since 2 = 21, n = 1

 The single selection variable S has two values:
• S = 0 selects input I0

• S = 1 selects input I1

 The equation:

Y =     I0 + SI1

 Circuit composition:
• 1-to-2-line Decoder

• 2 Enabling circuits

• 2-input OR gate

S

S

I0

I1

Decoder
Enabling
Circuits

Y



2-to-1-Line Multiplexer (continued)

 To obtain a basis for multiplexer expansion, we 
combine the Enabling circuits and OR gate into an 
AND-OR circuit:
• 1-to-2-line decoder

• 2  2 AND-OR

 In general, for an 2n-to-1-line multiplexer:
• n-to-2n-line decoder

• 2n  2 AND-OR



Example: 4-to-1-line Multiplexer

 2-to-22-line decoder

 22  2 AND-OR

S1

Decoder

S0

Y

S1

Decoder

S0

Y

S1

Decoder

4 x2 AND-OR
S0

Y

I2

I3

I1

I0



C0 C1 C2 Function Comments

0 0 0 1 always 1

0 0 1 A + B logical OR

0 1 0 (A • B)' logical NAND

0 1 1 A xor B logical xor

1 0 0 A xnor B logical xnor

1 0 1 A • B logical AND

1 1 0 (A + B)' logical NOR

1 1 1 0 always 0

3 control inputs: C0, C1, C2

2 data inputs: A, B

1 output: F

Logical Function Unit: with a Multiplexer block

 Example: Multi-purpose Function Block
• 3 control inputs to specify operation to perform on 

operands

• 2 data inputs for operands

• 1 output of the same bit-width as operands

A

B

C0 C1 C2

F



Alternative implementation to the 5-variable K-map:

by discrete gates and multiplexer implementation

1

0

A

B

A

B

A

B

Multiplexer implementation

C2C0 C1

0

1

2

3

4

5

6

7
S2

8:1 MUX

S1 S0

F

C0 C1 C2 A B F
0 0 0 0 0 1

0 0 0 0 1 1

0 0 0 1 0 1

0 0 0 1 1 1

0 0 1 0 0 0

0 0 1 0 1 1

0 0 1 1 0 1

0 0 1 1 1 1

0 1 0 0 0 1

0 1 0 0 1 1

0 1 0 1 0 1

0 1 0 1 1 0

0 1 1 0 0 0

0 1 1 0 1 1

0 1 1 1 0 1

0 1 1 1 1 0

1 0 0 0 0 1

1 0 0 0 1 0

1 0 0 1 0 0

1 0 0 1 1 1

1 0 1 0 0 0

1 0 1 0 1 0

1 0 1 1 0 0

1 0 1 1 1 1

1 1 0 0 0 1

1 1 0 0 1 0

1 1 0 1 0 0

1 1 0 1 1 0

1 1 1 0 0 0

1 1 1 0 1 0

1 1 1 1 0 0

1 1 1 1 1 0
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Multiplexer



Multiplexers (8-to-1 MUX)



Other Multiplexer Implementations

 Three-state logic in place of AND-OR

 Gate input cost = 14 compared to 22 for gate 
implementation

I0

I1

I2

I3

S1

S0

(b)

Y
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Shift Register

 This shifter 
moves the bits 
of a nibble one 
position to the 
left or right?

If S = 0, in which 
direction do the input 
bits shift?   
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Shift Register

74LS164
8-bit shift register


