
Other Gate Types

Why?
• Implementation feasibility and low cost

• Power in implementing Boolean functions

• Convenient conceptual representation

Gate classifications
• Primitive gate - a gate that can be described

using a single primitive operation type (AND or
OR) plus an optional inversion(s).

• Complex gate - a gate that requires more than
one primitive operation type for its description

Buffer

 A buffer is a gate with the function F = X

 In terms of Boolean function, a buffer is the same
as a connection!

 A buffer is an electronic amplifier used to
improve circuit voltage levels and increase the
speed of circuit operation.

X F

NAND Gate

 The basic NAND gate has the following symbol,
illustrated for three inputs:

AND-Invert (NAND)

 NAND represents NOT AND, i. e., the AND
function followed by a NOT.

 The symbol shown is an AND-Invert. The small
circle (, “bubble”) represents the invert function.

ZYX)Z,Y,X(F =
X

Y

Z

NAND Gates

 Applying DeMorgan's Law gives Invert-OR (NAND)

 This NAND symbol is called Invert-OR, since inputs are
inverted and then ORed together.

 AND-Invert and Invert-OR both represent the NAND
gate.

ZYX)Z,Y,X(F ++=
X
Y
Z

NAND Gates

 The NAND gate is the natural implementation for CMOS
technology in terms of chip area and speed.

 Universal gate: a gate type that can implement any
Boolean function, NAND is an universal gate.

NOT

AND OR

NOR Gate

The basic NOR gate has the following
symbol, illustrated for three inputs:

OR-Invert (NOR)
NOR represents NOT-OR, i. e., the OR

function followed by a NOT.

The symbol shown is an OR-Invert. The
small circle (,“bubble”) represents the
invert function.

X
Y
Z

ZY +X +)Z,Y,X(F =

NOR Gate

 Applying DeMorgan's Law gives Invert-AND (NOR)

 This NOR symbol is called Invert-AND, since inputs are
inverted and then ANDed together.

 OR-Invert and Invert-AND both represent the NOR
gate.

X
Y
Z

ZYX)Z,Y,X(F =

NOR Gate (continued)

 The NOR gate is a natural implementation for some
technologies other than CMOS in terms of chip area
and speed.

 The NOR gate is an universal gate

NOT

ANDOR

Exclusive OR/Exclusive NOR

 The eXclusive OR (XOR) function is an important
Boolean function used extensively in logic circuits.

 The XOR function may be;
• implemented directly as an electronic circuit

• implemented by interconnecting other gate types

 The eXclusive NOR (XNOR) function is the
complement of the XOR function

 By our definition, XOR and XNOR gates are complex
gates.

Exclusive OR/ Exclusive NOR

Uses for the XOR and XNORs gate include:
• Adders/subtractors/multipliers

• Counters/incrementers/decrementers

• Parity generators/checkers

Definitions
• The XOR function is:

• The eXclusive NOR (XNOR) function, otherwise
known as equivalence is:

Strictly speaking, XOR and XNOR gates do
no exist for more that two inputs. Instead,
they are replaced by odd and even functions.

YXYX +=YX

YXYXYX +=

Truth Tables for XOR/XNOR

 Operator Rules:

XOR XNOR
 The XOR function means:

X OR Y, but NOT BOTH
 The XNOR function means:

X AND Y are equal, BOTH 0 OR 1

X Y

0 0 0

0 1 1

1 0 1

1 1 0

0 0 1

0 1 0

1 0 0

1 1 1

or X Y
YX X Y YX

XOR/XNOR

 The XOR function can be extended to 3 or more
variables. For more than 2 variables, it is called an
odd function or modulo 2 sum (Mod 2 sum), not an
XOR:

 The complement of the odd function is the even
function.

 The XOR identities:

+++= ZYXZYXZYXZYXZYX

X1XX0X

1XX0XX =

=

XYYX =

ZYX)ZY(XZ)YX(==

XYYX =

=

=

Symbols For XOR and XNOR

 XOR symbol:

 XNOR symbol:

 Shaped symbols exist only for two inputs

XOR Implementations

 The simple SOP implementation uses the following
structure:

 A NAND-only implementation is:

X

Y

X Y

X

Y
yx y = yx + y = x + y

yx x = yx + x = x + y

yx X Yx+y x+y =

Odd and Even Functions

 The odd and even functions on a K-map form
checkerboard patterns.

 SOP for odd and even functions are consist of disjoint
of sets 2n-1 minterms that are prime implicants.

 Implementation of odd and even functions for greater
than four variables as a two-level circuit is tough, so
we use “trees”.

Example: Odd Function Implementation

 Design a 3-input odd function F = X Y Z
with 2-input XOR gates

 Factoring, F = (X Y) Z

 The circuit:

+ +

X

Y

Z
F

+ +

x

y

10 2

4

3

5 67
1

1

1

1

z

x
yz=00 yz=01 yz=11 yz=10

x=0

x=1

Odd and Even Functions

 Odd function Even function

1

1

1

1

11

1

1
8 9 1011

12 13 1415

0 1 3 2

5 64 7

X

Z

W

Y
yz=00 yz=01 yz=11 yz=10

wx=00

wx=01

wx=11

wx=10

yz
W
X

1

1

1

1

1 1

1

1
8 9 1011

12 13 1415

0 1 3 2

5 64 7

X

Z

W

Y
yz=00 yz=01 yz=11 yz=10

wx=00

wx=01

wx=11

wx=10

yz
W
X

Example: Even Function Implementation

 Design a 4-input even function F = W X Y Z
with 2-input XOR and XNOR gates

 Factoring, F = (W X) (Y Z)

 The circuit:

W

X

Y
F

Z

+ ++

+ + +

1

11

11

11

1 X

Y

Z

W

Parity Generators and Checkers

 Parity bit added to n-bit code to produce an n + 1 bit code:
• Add odd parity bit to generate code words with even parity
• Add even parity bit to generate code words with odd parity
• Use odd parity circuit to check error words with even parity
• Use even parity circuit to check error words with odd parity

 Example: n = 3. Generate even
parity code words of length four
with odd parity generator:

 Check even parity code words of
length four with odd parity checker:

 Operation: (X,Y,Z) = (0,0,1) gives
(X,Y,Z,P) = (0,0,1,1) and E = 0.
If Y changes from 0 to 1 between
generator and checker (X,Y,Z, P) = (0,1,1,1) , then E = 1
indicates an error.

X
Y

Z P

X
Y

Z
E

P

Enabling Function

 Enabling permits an input signal to pass through to
an output

 Disabling blocks an input signal from passing
through to an output, replacing it with a fixed value

0 output

 When disabled EN=0

1 output

 When enabled EN = 1 F = X

 The value on the output when it is disable can be 0,
1, or Hi-Z

X
F

EN

(a)

EN

X
F

(b)

The 3-State Buffer

 For the symbol and truth
table, IN is the data input,
and EN, the control input.

 For EN = 0, regardless of the
value on IN (denoted by X),
the output value is Hi-Z.

 For EN = 1, the output value
follows the input value.

 High impedance (or Hi-Z): In
that state the output is
disconnected which is equal
to open circuit. In the other
words in that state circuit
has no logic significant.

IN

EN

OUT

EN IN OUT

0 X Hi-Z

1 0 0

1 1 1

Symbol

Truth Table

3-State Logic Circuit

 Data Selection Function: If S = 0, OL = IN0, else OL = IN1

 Performing data selection with 3-state buffers:

 Since EN0 = S and EN1 = S, one of the two buffer outputs is
always Hi-Z and never occurs EN0 = EN1 = 1.

EN0

S

IN0 EN1

S

IN1 OL

0 X 1 0 0

0 X 1 1 1

1 0 0 X 0

1 1 0 X 1

IN0

IN1

EN0=S

EN1=S

S
OL

More Complex Gates

 Bi-diretional line:
• S=0: Left Right;

• S=1: Left Right, or viceversa?

IN

IN

EN0=S

EN1=S

S
OL/

OL

More Complex Gates (continued)

 The remaining complex gates are SOP or POS structures
with and without an output inverter.

 The names are derived using:
 A - AND

 O - OR

 I - Inverter

• Numbers of inputs on first-level “gates” or directly to
second-level “gates”

 Example AOI: AND-OR-Invert consists of a single gate with
AND functions driving an OR function which is inverted.

 Example: 2-1 AO has two 2-input ANDs driving an OR

 These gate types are used because:
• the number of transistors needed is fewer than required by

connecting together primitive gates

• potentially, the circuit delay is smaller, increasing the circuit
operating speed

Commercial Logic Chips

PLA: Programmable Logic Arrays

 PLAs

• Implement sum-of-product expressions
 2 levels, no possibility to simplify the logical

expressions

• Take N inputs and produce M outputs
 Each input represents a logical variable

 Each output represents a logical function output

• Internally uses
 An AND array

• Each AND gate receives 2N inputs: N inputs and
their complements

 An OR array

Programmable Logic Arrays (cont.)

 A blank PLA with 2 inputs and 2 outputs

Programmable Logic Arrays (cont.)

 Implementation examples

Programmable Logic Arrays (cont.)

 Implementation examples

Programmable Logic Arrays (cont.)

 Simplified notation

BC'

B'C

B'D

BC'D

C'D'

CD

B'D'

A

BCD'

A B C D

PLA implementation
BCD to 7-segment display controller

C0 = B C' D + C D + B' D' + B C D'

C1 = B' D + C' D' + C D + B' D'

C2 = B' D + B C' D + C' D' + C D + B C D'

C3 = B C' D + B' D + B' D' + B C D'

C4 = B' D' + B C D'

C5 = B C' D + C' D' + A + B C D'

C6 = B' C + B C' + B C D' + A

C0 C1 C2 C3 C4 C5 C6

NAND Mapping Algorithm

1. Replace ANDs and ORs:

2. Note that:

.

.

.
.
.
.

.

.

.

.

.

.

.

.

.
.
.
.

NAND Mapping Example

NOR Mapping Algorithm

1. Replace ANDs and ORs:

2. Note that:

.

.

.
.
.
.

.

.

.

.

.

.
.
.
.

.

.

.

NOR Mapping Example

A

B

C

D

E

F

(a)

A

B

C

D

E

F

(c)

F

A

B

X

C

D

E

(b)

2

3

1

C0 C1 C2 Function Comments

0 0 0 1 always 1

0 0 1 A + B logical OR

0 1 0 (A • B)' logical NAND

0 1 1 A xor B logical xor

1 0 0 A xnor B logical xnor

1 0 1 A • B logical AND

1 1 0 (A + B)' logical NOR

1 1 1 0 always 0

3 control inputs: C0, C1, C2

2 data inputs: A, B

1 output: F

Logical Function Unit

 Multi-purpose Function Block
• 3 control inputs to specify operation to perform on

operands

• 2 data inputs for operands

• 1 output of the same bit-width as operands

A

B

C0 C1 C2

F

111

1 111

1

11

11

1 1

1

1

Formalize the Problem

C0 C1 C2 A B F
0 0 0 0 0 1

0 0 0 0 1 1

0 0 0 1 0 1

0 0 0 1 1 1

0 0 1 0 0 0

0 0 1 0 1 1

0 0 1 1 0 1

0 0 1 1 1 1

0 1 0 0 0 1

0 1 0 0 1 1

0 1 0 1 0 1

0 1 0 1 1 0

0 1 1 0 0 0

0 1 1 0 1 1

0 1 1 1 0 1

0 1 1 1 1 0

1 0 0 0 0 1

1 0 0 0 1 0

1 0 0 1 0 0

1 0 0 1 1 1

1 0 1 0 0 0

1 0 1 0 1 0

1 0 1 1 0 0

1 0 1 1 1 1

1 1 0 0 0 1

1 1 0 0 1 0

1 1 0 1 0 0

1 1 0 1 1 0

1 1 1 0 0 0

1 1 1 0 1 0

1 1 1 1 0 0

1 1 1 1 1 0

C0 = 0 C0 = 1

m=C0’A’B+C0’AB’+C2’A’B’+C1’AB

C1C2 C1C2

ABAB

c= m+C0’C1’C2’+C0’C1’B+C0’C1’A+C0’C2’A’+C0’C2’B’

Beginning Hierarchical Design

 To control the complexity of the function mapping inputs to
outputs:
• Decompose the function into smaller pieces called blocks

• Decompose each block’s function into smaller blocks, repeating as
necessary until all blocks are small enough

• Any block not decomposed is called a primitive block

• The collection of all blocks including the decomposed ones is a
hierarchy

 Example: 9-input odd function
• Top Level: 9 inputs, one output

 2nd Level: Four 3-bit odd parity trees in two levels

• 3rd Level: Two 2-bit exclusive-OR functions

 Primitives: Four 2-input NAND gates

• Design requires 4 X 2 X 4 = 32 2-input NAND gates

Hierarchy for Parity Tree Example

B O

X 0
X 1
X 2
X 3
X 4
X 5
X 6
X 7
X 8

Z O

9-INPUT
ODD

FUNCTION

(a) Symbol for circuit

3-INPUT

ODD

FUNCTION

A
0

A 1

A
2

B O

3-INPUT

ODD

FUNCTION

A 0

A 1

A 2

B O

3-INPUT

ODD

FUNCTION

A 0

A 1

A 2

B O

3-INPUT

ODD

FUNCTION

A 0

A 1

A 2

X 0

X 1

X
2

X
3

X 4

X 5

X 6

X 7

X 8

Z O

(b) Circuit as interconnected 3-input odd
function blocks

B O

A 0

A 1

A 2

(c) 3-input odd function circuit as
interconnected exclusive-OR
blocks

(d) Exclusive-OR block as interconnected
NANDs

Reusable Functions

 Whenever possible, we try to decompose a
complex design into common, reusable function
blocks

 These blocks are
• verified and well-documented

• placed in libraries for future use

Functions and Functional Blocks

 The functions considered are those found to be very useful in
design

 Corresponding to each of the functions is a combinational
circuit implementation called a functional block.

 In the past, functional blocks were packaged as small-scale-
integrated (SSI), medium-scale integrated (MSI), and large-
scale-integrated (LSI) circuits.

 Today, they are often simply implemented within a very-large-
scale-integrated (VLSI) circuit.

Top-Down versus Bottom-Up

 A top-down design proceeds from an abstract, high-level
specification to a more and more detailed design by
decomposition and successive refinement

 A bottom-up design starts with detailed primitive blocks and
combines them into larger and more complex functional
blocks

 Design usually proceeds top-down to known building blocks
ranging from complete CPUs to primitive logic gates or
electronic components.

Decoder

 Is a combinational circuit that converts binary information
from n input lines to a maximum of 2n unique output lines. For
example if the number of input is n=3 the number of output
lines can be m=23 . It is also known as 1 of 8 because one
output line is selected out of 8 available lines:

3 to 8

decoder

enable

 Decoding - the conversion of an n-bit input code to an m-bit
output code with n m 2n such that each valid code word
produces a unique output code

 Functional blocks for decoding are

• called n-to-m line decoders, where m 2n, and

• generate 2n (or fewer) minterms for the n input variables

Decoding

 1-to-2-Line Decoder

 2-to-4-Line Decoder

Note that the 2-to-4-line is
made up of:

• 2 1-to-2 line decoders

• 4 AND gates.

Decoder Examples

A 1

0

0

1

1

A0

0

1

0

1

D0

1

0

0

0

D 1

0

1

0

0

D2

0

0

1

0

D3

0

0

0

1

(a)

D0 A1 A0

D1 A1 A0

D2 A1 A0

D3 A1 A0

(b)

A 1

A 0

A D0 D1

0 1 0

1 0 1

(a) (b)

D 1 AA

D0 A

Decoder Expansion - Example 1

 3-to-8-line decoder
• Number of output ANDs = 8

• Number of inputs to decoder = 3

 Closest possible split to equal
• 2-to-4-line decoder

• 1-to-2-line decoder

 2-to-4-line decoder
 Number of output ANDs = 4

 Number of inputs to decoder = 2

 Closest possible split to equal
 Two 1-to-2-line decoders

Decoder Expansion - Example 1

Decoder Expansion - Example 2

 7-to-128-line decoder
• Number of output ANDs = 128

• Number of inputs to decoder = 7
 Closest possible split to equal

 4-to-16-line decoder
• Number of output ANDs = 16

• Number of inputs to decoder = 4

 Closest possible split to equal

 2 2-to-4-line decoders

 3-to-8-line decoder
• Number of output ANDs = 8

• Number of inputs to decoder = 3

 Closest possible split to equal

 2-to-4-line decoder

 1-to-2-line decoder

 In general, attach m-enabling circuits to the outputs

 See truth table below for function
• Note use of X’s to denote both 0 and 1 (don’t care)

• Combination containing two X’s represent four binary combinations
(compact table)

 Alternatively, can be viewed as distributing value of signal EN to 1
of 4 outputs, in this case, called a demultiplexer

Decoder with Enable

EN

A1

A0 D0

D1

D2

D3

(b)

EN A1 A0 D0 D1 D2 D3

0

1

1

1

1

X

0

0

1

1

X

0

1

0

1

0

1

0

0

0

0

0

1

0

0

0

0

0

1

0

0

0

0

0

1

(a)

General Combinatorial Circuit implementation
by a Decoder and OR Gates

 Implement m functions of n variables with:
• Sum-of-minterms expressions (SOP)

 One n-to-2n-line decoder

 m OR gates, one for each output

 Approach
 Find the minterms for each output function

 OR the minterms together

Decoder and OR Gates Example

 Implement the following set of functions of four input A, B, C, D:

P1 = Sm(1,2,8,11)

P2 = Sm(1,4,8,13)
P4 = Sm(2,4,8,14)

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

A

B

C

D

P1

P4

P2

Major application of Decoder

 Decoder is use to implement any combinational circuits (fn)

 For example the truth table for full adder is:

s(x,y,z)=∑(1,2,4,7) and C(x,y,z)= ∑ (3,5,6,7).

 The implementation with decoder is:

Encoding

 Encoding - the opposite of decoding - the conversion of an
m-bit input code to a n-bit output code with n m 2n

such that each valid code word produces a unique output
code

 An encoder has 2n (or fewer) input lines and n output lines
which generate the binary code corresponding to the input
values

 Typically, an encoder converts a code containing exactly
one bit that is 1 to a binary code corresponding to the
position in which the 1 appears.

Encoder Example

 A decimal-to-BCD encoder
• Inputs: 10 bits corresponding to decimal digits 0

through 9, (D0, …, D9)

• Outputs: 4 bits with BCD codes

• Function: If input bit Di is a 1, then the output (A3, A2,
A1, A0) is the BCD code for i

 The truth table could be formed, but
alternatively, the equations for each of the four
outputs can be obtained directly.

Encoder Example

 Input Di is a term in equation Aj if bit Aj is 1 in the
binary value for i.

 Equations:

A3 = D8 + D9

A2 = D4 + D5 + D6 + D7

A1 = D2 + D3 + D6 + D7

A0 = D1 + D3 + D5 + D7 + D9

 F1 = D6 + D7 can be extracted

from A2 and A1.

0
1
2
3
4
5
6
7
8
9

A0

A1

A2

A3

56

Combinational Circuits

74LS420

One of Ten Decoder

n-bit encoder with priority

 If one of the input lines is active the encoder
produces the binary code corresponding to that
line

 If more than one of the input lines is activated all
the output is undefined. We can consider don’t
care for these situations but in many cases we
consider this problem by using priority encoder.

Priority Encoder Example

 Priority encoder with 5 inputs (D4, D3, D2, D1, D0) - highest priority to
most significant 1 present - Code outputs A2, A1, A0 and V where V
indicates at least one 1 present.

 Xs in input part of table represent 0 or 1 (don’t care); thus table
entries correspond to product terms instead of minterms. The
column on the left shows that all 32 minterms are present in the
product terms in the table

No. of
Minterms

Inputs Outputs

D4 D3 D2 D1 D0 A2 A1 A0 V

0 0 0 0 0 X X X 0

1 0 0 0 0 1 0 0 0 1

2 0 0 0 1 X 0 0 1 1

4 0 0 1 X X 0 1 0 1

8 0 1 X X X 0 1 1 1

16 1 X X X X 1 0 0 1

Priority Encoder Example (continued)

D4 = 1

1 1 1

D1

D0

D2

D3

A2=D4

1

1 1 1 1

1 1 1 1

1 1 1 1

D4 = 0

1

1

1

D1

D0

D2

D3

11

11

11

1

1

1

A1=D4D3+D4D2

D4 = 0

1

1

1 1

1

1 11

11

A0=D4D3+D4D2D1

D0

D2

D3

D1

Priority Encoder Example (continued)

 Could use a K-map to get equations, but can be
read directly from table and manually optimized if
careful:
A2 = D4

A1 = D3 + D2 = F1, F1 = (D3 + D2)

A0 = D3 + D1

V = D4 + F1 + D1 + D0

D4 D4 D4

D4 D4 D2

Multiplexer

 It is a combinational circuit that selects binary
information from one of the input lines and directs
it to a single output line

 For example for 2-to-1 multiplexer if selection S
is zero then I0 has the path to output and if S is
one I1 has the path to output

 A typical multiplexer has n control inputs (Sn - 1, …
S0) called selection inputs, 2n information inputs
(I2

n
- 1, … I0), and one output Y

 A multiplexer can be designed to have m
information inputs with m <2n as well as n
selection inputs

2-to-1-Line Multiplexer

 Since 2 = 21, n = 1

 The single selection variable S has two values:
• S = 0 selects input I0

• S = 1 selects input I1

 The equation:

Y = I0 + SI1

 Circuit composition:
• 1-to-2-line Decoder

• 2 Enabling circuits

• 2-input OR gate

S

S

I0

I1

Decoder
Enabling
Circuits

Y

2-to-1-Line Multiplexer (continued)

 To obtain a basis for multiplexer expansion, we
combine the Enabling circuits and OR gate into an
AND-OR circuit:
• 1-to-2-line decoder

• 2 2 AND-OR

 In general, for an 2n-to-1-line multiplexer:
• n-to-2n-line decoder

• 2n 2 AND-OR

Example: 4-to-1-line Multiplexer

 2-to-22-line decoder

 22 2 AND-OR

S1

Decoder

S0

Y

S1

Decoder

S0

Y

S1

Decoder

4 x2 AND-OR
S0

Y

I2

I3

I1

I0

C0 C1 C2 Function Comments

0 0 0 1 always 1

0 0 1 A + B logical OR

0 1 0 (A • B)' logical NAND

0 1 1 A xor B logical xor

1 0 0 A xnor B logical xnor

1 0 1 A • B logical AND

1 1 0 (A + B)' logical NOR

1 1 1 0 always 0

3 control inputs: C0, C1, C2

2 data inputs: A, B

1 output: F

Logical Function Unit: with a Multiplexer block

 Example: Multi-purpose Function Block
• 3 control inputs to specify operation to perform on

operands

• 2 data inputs for operands

• 1 output of the same bit-width as operands

A

B

C0 C1 C2

F

Alternative implementation to the 5-variable K-map:

by discrete gates and multiplexer implementation

1

0

A

B

A

B

A

B

Multiplexer implementation

C2C0 C1

0

1

2

3

4

5

6

7
S2

8:1 MUX

S1 S0

F

C0 C1 C2 A B F
0 0 0 0 0 1

0 0 0 0 1 1

0 0 0 1 0 1

0 0 0 1 1 1

0 0 1 0 0 0

0 0 1 0 1 1

0 0 1 1 0 1

0 0 1 1 1 1

0 1 0 0 0 1

0 1 0 0 1 1

0 1 0 1 0 1

0 1 0 1 1 0

0 1 1 0 0 0

0 1 1 0 1 1

0 1 1 1 0 1

0 1 1 1 1 0

1 0 0 0 0 1

1 0 0 0 1 0

1 0 0 1 0 0

1 0 0 1 1 1

1 0 1 0 0 0

1 0 1 0 1 0

1 0 1 1 0 0

1 0 1 1 1 1

1 1 0 0 0 1

1 1 0 0 1 0

1 1 0 1 0 0

1 1 0 1 1 0

1 1 1 0 0 0

1 1 1 0 1 0

1 1 1 1 0 0

1 1 1 1 1 0

67

Multiplexer

Multiplexers (8-to-1 MUX)

Other Multiplexer Implementations

 Three-state logic in place of AND-OR

 Gate input cost = 14 compared to 22 for gate
implementation

I0

I1

I2

I3

S1

S0

(b)

Y

70

Shift Register

 This shifter
moves the bits
of a nibble one
position to the
left or right?

If S = 0, in which
direction do the input
bits shift?

71

Shift Register

74LS164
8-bit shift register

